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An axisymmetric hypersonic flow at large distances from the streamlined body 
is considered. Behind the body the flow splits into three regions: the regioncon- 

taintng the shock wave structure, the external ideal flow, and the laminar vis- 
cous and heat conducting wake. Perturbations associated with the constant mo- 

ment of momentum directed along the axis of symmetry, are studied. The per- 

turbations constructed are localized in the wake and decay exponentially on 
passing to the outer region. 

We shall consider an axisymmetric steady state flow of gas. We denote by pm thegas 
density in the incoming stream moving at velocity v, which is collinear with the s-axis 

of the cylindrical x, r, 8 coordinate system. Neglecting the pressure of gas in the in- 
coming stream we set pm = 0, from this it follows that the Mach number M, = 00. 

We assume the gas to be perfect with both specific heat capacities c, and C, constant. 

We denote the Prandtl number by ATp, and assume for simplicity that the coefficients 

of viscosity A1 and h,, and of heat conductivity k , are linearly dependent on the speci- 

fic enthalpy w ,namely h, = hlsw, h, = &,,w, k = k,w. In what follows it is 

convenient to assume that the independent variables and the unknown functions are dimen- 

sionless, and use p,, V, and hls as the basic units of reference. We use the systemof 

Navier-Stokes equations written in the dimensionless form, as the basic system 

58 



Hypersonic axisymmetric flow with constant angular momentum 59 

It was established in [l] that in the case of flows with infinitely large Mach number 
the uniform incoming flow is separated from the nonuniform one by a line of disconti- 

nuity in the derivatives of the gas dynamic functions. This line forms a boundary of the 

region of shock wave structure. The decisive part in the formation of flow in this region 
is played by the normal viscous stresses and the normal component of the thermal flux 
vector. We use the method of matching the outer and inner asymptotic expansions [2] 

to pass from the region of the shock wave structure to the outer region, in which the in- 

fluences of viscosity and heat conductivity become insignificant in the first approxima- 

tion. For a flow in the outer region an analogy [3 - 61 holds, which compares the hyper- 

sonic flow with an unsteady flow in a space of dimension less by one. Using this analogy 
we can find the parameters of the flow behind a finite body from the solution of theprob- 
lem of strong explosion [7 - 91. The solution of the problem of strong explosion can, in 
turn, be extended on approaching the axis of the flow, to the region of laminar wake [lo] 
where the tangential component of the heat flux vector and the tangential viscous stresses 

play a decisive role in the formation of the flow. 

In the present paper we consider a hypersonic flow corresponding to a flow past a body 
in which the moment of momentum M, directed along the symmetry axis is conserved. 

The reasons for the constancy of the moment of momentum are not essential in the first 

approximation. Since the gas is assumed viscous, this could be caused by a twisted stream 

or by a uniformly rotating body. To calculate iI!, we introduce two control planesper- 
pendicular to the flow axis. Let one of them be situated ahead the body and the other, 

denoted by Z , behind the body at the distance x. Remembering that the incoming flow 
is uniform, we have the following expression for the dimensionless moment: 

Clearly, the quantity IM, should not be dependent on the distance x at which the control 
plane ): is situated. 

The authors of [ll] proposed a general method for constructing unsteady flows of aper- 
feet gas in which the basic self-similar flow is subjected to perturbations connected with 
any one physical quantity and maintained over a period of time. The results of [11] were 

extended in [12, 131 to embrace the stationary hypersonic flows and and flows werecon- 
strutted behind the bodies subjected not only to drag, but also to lift. The basic idea of 
this approach consists of the fact that we begin the search for the perturbations by stipu- 
lating at once a condition ensuring that some physical quantity is maintained, namely, 
for the unsteady flows we stipulate that they be independent of time t, or in the case of 
the steady hypersonic flows -. independence of the coordinate z. Naturally, in the -case 
of a complex flow separated into regions such requirement is connected with the hypo- 
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thesis that integration over one of these regions yields a finite contribution to the physi- 
cal quantity under consideration. It must also be shown that continuation of perturbations 
into the remaining regions does not lead to appearance of any singularities. 

In the flow under consideration we have three regions: the region of shock wave struc- 

ture, the outer region and the laminar wake. Let us estimate the moment of momentum 
A!i, for each of these regions. Since the formula (2) defining M, contains tangential 

velocity va, we shall verify the feasibility of introducing vs in each of the regions. 
The region of shock wave structure is separated from the uniform fiow by the line of 

discontinuity in the derivatives of the gas dynamic functions. The line is assumed sym- 

metrical and has the form r, = (b#‘*+ . . . when 5 + oo . We shall use the es- 
timates given in [Z] for the functions within this region, Integrating the projectionofthe 
equation of motion on the 8 -axis from the system (l), we obtain 

pvsvrra = raw ( %I 
+ + fi (5) (3) 

where fi (s) is an arbitrary function. The boundary conditions at r = r,, where the 
functions in question have the valdes vs = 0, v, = 0, w = 0, require that we set 

fa (3) = 0. Integration oY=n;(e&, { (+ f %j df13 

Using the asymptotics of the functions p, v, and w for r --t r, given in [Z’J, we can 
show that the term pv, / w yields an integrable singularity, tneretore the fact that vs = 
0 for r = r, compels us to set fi (ST) = 0. This implies that we cannot introduceper- 

turbations connected with the moment of momentum into the region of shock wave struc- 
ture, and on the passage to the outer region, we must take ve = 0 as the boundary con- 
dition. This corresponds to the Rankine-Hugoniot condition of preserving the tangential 
velocity component during the passage through the shock wave, 

Let us now consider the flow in the outer region. The flow can be constructed in the 

first approximation proceeding from the solution of the problem of strong explosion [7, 

81, the latter taken in the form 

We supplement the system (4) with the tangential velocity component 

VO (5) 

We use the condition that MT is independent of 2 to find that a = s/s. Substituting 

(4) and (5) into (l), we obtain the following corollaries from the equation of continuity 
and from the projection of the equation of motion on the O-axis: 

( Vl -2+.&g) -g+(-q$++w=o (6) 

( Vl --q+~+(+_ 2 3(x+i) plzl= 0 
) 
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Multiplying the first equation of (6) by Z1 and adding the result to the second equation, 
we obtain 

where C1 is a constant. We now use the condition at the boundary of the outer flow at 

E =: 1 where ve = 0 and therefore 2, (1) = 0. This at once yields C, = 0. From 

this we conclude that in the outer flow 2, 3 0 and a finite contribution towards il!i, 
cannot be obtained. 

It remains to consider the region of wake. In the first approximation the flow in the 

wake region has the form [lo] 

v,=l- 2 (%I+ i) bPl(x+l)Us (5) + . . . (7) 

v, = &bk-xI(~+1)v2 (5) + . . . 

P = s x-‘I(x+‘)p2 (5) + . . . 

1 
Jr = 2(x+1) $&K)+.-. 

w = 2 (% ; ip bx-~~(x+lvv~ (5) + . . .) 

On approaching the axis of the flow (5 j 0) the functions (7) have the following ex- 

pansions : 
U,(g,)=U,,+..., v,=v,f;+... (8) 

pa (5) = p20 + l * -, p, = PI09 w2 (f) = wzo + * - - 

where u so, p20,Pl(l, W,, are some positive constants. The functions (7) are monotok 

ous. When 5 3 o. , they have asymptotics which transform into the asymptotics of the 
solution of the strong explosion problem [14] near its center 

us (5) = u&s1(x-i) + . . .) Va = * t + . . . (9) 

P2 (5) = PI0 52’(*-l) + . . .) p2 (5) = PI09 W2 (5) = Wiof;-2r(x-1) + . . . 

where Ulo, q10, Plo, WIO are some positive constants. 
Let us supplement the functions (7) with the tangential velocity component 

VI3 = &b’l%-Bz2 (C) + . . . (10) 

Substituting (7) and (10) into (2) we obtain the following expression for the moment of 
momentum : 

M,= -~xzaJ(x-l)-~~o,lo = lim { f3sZs&V~i (IV 
c-0 

As before, we choose $ from the condition that M, is independent of the coordinate z, 
and find that p = 2 / (X + 1). It is clear that the projection of the equation of mo- 

tion on the e-axis in the system (1) could be replaced by the projection of the equation 
of conservation of the moment of momentum on the x-axis 

a 
z 

[ 
Ppvsv, - r=w 

( ~-~)J+~[~a~v~v~-~2W~]= 0 (12) 

We note that the integrand in (2) appears also under the derivative with respect to z’ in 
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(12). Since the motion in question is related to the constant quantity MS, the functions 

(7) and (10) will have the first integral [El. Performing the manipulations similar to 
those of [15], we obtain x tx _ i) 

2(X+Ila 

Let US investigate the convergence of the integral 1, when c -0 and 5 -+. oo. 

Using (8),we compute the asymptotics of 2% when g -+ 0 , yields 

2 2=- (x+fP (72 &*, 

x(x-1) w20 5 

The above expression implies that although the function 2s -+ 00, nevertheless thein- 
tegral I, converges, when 5 --+ 0 , for any value of Cs. 

Next we inspect the behavior of 2s when 5 + 00. Using the asymptotics (9) we ob- 
tain 

2 2= cs -z$_ $ ~-NW-3 + . . . 
10 

(14) 

Naturally, when 5 + 00 , the asymptotics of the solution of (13) must ensure that the 

integral I, in (11) converges. Substituting (14) into the integral defining Is , we obtain 
z 

From this we conclude at once that the finiteness of M, is equivalent to the require- 

ment that cs = 0. Integrating now (13), we obtain 

0 

when 5 --t 0 , the integral I, (5) + 0 ,consequently 2, + C,G. The behavior of 

2, when 5 -+ 00 is determined-using the asymptotics (9) 

Z2 = GC exp [- (’ 2x2 

- 1) (x + 1) _i%& g2w I (x-1) 
1o 1 (15) 

Since the exponential part of the expression (15) is negative, (p10 > 0, WI0 -> o>, 

and tends to infinity as 5 -+ 00, it follows that z2 decays exponentially. This implies 

that the integral Ia converges. The formula (11) easily yields the relation connecring 

the constant C, with Ma : 
M a-_- 

The function 2% is shown in Fig. 1 for ca = 1, X = 1,4, fvpr = a/B and the con- 

stant Is = 0.0833. 
Thus the ~r~rbations which are connected by the constant moment of mo~ntum 

directed along the x-axis, are localized within the wake and decay exponentially on the 
passage from the wake into the outer flow. This leads us to conclusion that, within the 

approximation considered, the continuation of va into the outer region will be represented 
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by a function identically equal to zero. 
The flow constructed is always rotational, but when M, = 0 , the component o, of 

the velocity vortex along the flow axis is iden- 

zz tically equal to zero. When M; appears, the 
latter emerges and we have a 

17.2 
0, = &$-slCX+1,(CC+~) 

In accordance with the asymptotic behavi- 
or of 2s ) the component oxpf the vortex 

L) 0.?5 I c has no sin~larities on the axis and decreases 

Fig. 1 exponentially when 5 + 00 . However, 
when the moment of momentum M, is con- 

served at z -+ 1x) , co,, tends to zero. This is explained by the dissipative processes ta- 

king place within the gas. 
In carrying out the computations, the fact that the longitudinal velocity v, was differ- 

ent from unity was never taken into account. For this reason an analogy exists for the pre- 
sent problem between the hypersonic and unsteady gas flows. The solutions obtained de- 

scribe the motion of an initially cold gas in which energy is emitted at the initialinstant 

of time along some axis, and an angular velocity is imparted which ensures the presence 
of a finite moment of momentum directed along this axis. 
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